Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethanediol, + Hexane, + Tributylamine, or + Triethylamine at (298.15, 303.15, and 308.15) K

Jyoti N. Nayak, Mrityunjaya I. Aralaguppi,* and Tejraj M. Aminabhavi

Center of Excellence in Polymer Science, Karnatak University, Dharwad 580 003, India

Densities, viscosities, and refractive indices of the binary mixtures of 1,4-dioxane with ethanediol, hexane, tributylamine, and triethylamine have been measured at (298.15, 303.15, and 308.15) K, while the speed of sound data are measured at 298.15 K. From these results, excess molar volume and deviations in viscosity, molar refraction, speed of sound, and isentropic compressibility have been calculated. These results are fitted to the polynomial equation to derive the binary coefficients. Standard errors have been calculated between the fitted results and the calculated data. These data have been used to discuss the mixing behavior of the components.

Introduction

Dioxane is a cyclic molecule used in a variety of applications in industrial sectors. Its interactions with different types of liquids such as ethanediol, hexane, tributylamine, and triethylamine are important from a fundamental viewpoint. In continuation of our earlier paper¹ on the properties of binary mixtures of tributylamine with a variety of other liquids as well as dioxane containing binary mixtures,²⁻⁸ we present here the experimental data on density, ρ , viscosity, η , and refractive index for the sodium D-line, $n_{\rm D}$, of the binary mixtures of 1,4-dioxane + ethanediol, + hexane, + tributylamine, or + triethylamine at (298.15, 303.15, and 308.15) K and the data for speed of sound, u, at 298.15 K. From these data, excess molar volume, V^{E} , deviation in viscosity, $\Delta \eta$, deviation in molar refraction, ΔR , deviation in sound velocity, Δu , and deviation in isentropic compressibility, $\Delta k_{\rm s}$, have been computed and the results are discussed in terms of the nature of molecular interactions between the mixing components.

Experimental Section

Materials. High-purity analytical reagent grade samples of ethanediol, hexane, and triethylamine and a laboratory reagent grade sample of tributylamine were procured from S.D. Fine Chemicals, Mumbai, India. 1,4-Dioxane is a high-purity sample procured from S.D. Fine Chemicals. The mol % purities of these liquids as determined by gas chromatography (GC) (HP 6890) using a flame ionization detector (FID) were >99% and are reported in Table 1 along with density and refractive index data measured at 298.15 K for pure liquids and a comparison with the literature values.

Binary mixtures were prepared by mass⁹ in specially designed conical flasks. The mass measurements accurate to ± 0.01 mg were performed on a digital electronic balance (Mettler, AE 240, Switzerland). A set of nine compositions were prepared for each mixture, and their physical properties were measured at the respective composition in the

 \ast To whom correspondence should be addressed. E-mail: aralaguppi@ yahoo.com.

Table 1.	Experiment	al Densi	ities (ρ) an	d Refi	ractive
Indices ((n _D) of Pure	Liquids	Compared	l with	Literature
Values a	t 298.15 K	-	-		

	mol%	ρ/(kg∙m ⁻³)	n _D		
liquid	purity	expt	lit (ref)	expt	lit (ref)	
1,4-dioxane	>99.0	1027.6	1028.0 (2)	1.4201	1.4200 (5)	
ethanediol	>99.0	1111.3	1110.0 (20)	1.4307	1.4306 (19)	
hexane	>99.0	654.8	654.8 (11)	1.3728	1.3723 (11)	
tributylamine	>99.0	774.3	774.0 (21)	1.4274	1.4280 (19)	
triethylamine	>99.5	723.1	722.8 (19)	1.3983	1.3980 (19)	

mole fraction scale from 0.1 to 0.9 in steps of 0.1. The possible uncertainty in mole fraction was less than 0.0002.

Methods. Densities of liquids and liquid mixtures were measured within a precision of ± 0.0001 g·cm⁻³ using the capillary-type pycnometer of capacity 10 cm³ volume. Experimental details and calibrations of the pycnometer and measurements are the same as reported earlier.⁹⁻¹¹

Viscosities were measured using a Cannon Fenske viscometer (size 75, ASTM D 445, Industrial Research Glassware Ltd., Roselle, NJ). An electronic digital stop-watch with a readability of ± 0.01 s was used for the flow time measurements. The measured viscosity values are precise up to ± 0.001 mPa·s. Calibration procedures of the pycnometer remain the same as described previously.^{9,10}

Refractive indices for the sodium D-line were measured using a thermostatically controlled Abbe refractometer (Atago 3T, Japan). A minimum of three independent readings were taken for each composition, and the average value was considered in all the calculations. Refractive index data are accurate to ± 0.001 units.

The speed of sound was measured using a variable path single-crystal interferometer (Mittal Enterprises, model M-84, New Delhi). A crystal-controlled high-frequency generator was used to excite the transducer at a frequency of 1 MHz. The frequency was measured within an accuracy of 1 in 10⁴ using a digital frequency meter. The interferometer cell was filled with the test liquid, and water was circulated around the measuring cell from a constant-temperature bath maintained at (298.15 ± 0.01) K. Details of the speed of sound measurements have been given earlier,¹² and these data are precise up to ±2 in 1000 m·s⁻¹.

Table 2. Experimental Density (ρ), Viscosity (η), Refractive Index (n_D), and Speed of Sound (u) of the Binary Mixtures at Different Temperatures

temp/K	<i>X</i> 1	$ ho/(kg\cdot m^{-3})$	$\eta/(mPa \cdot s)$	n _D	<i>u</i> /(m·s ⁻¹)	temp/K	<i>X</i> 1	$ ho/(kg\cdot m^{-3})$	η/(mPa⋅s)	n _D	$u/(\mathbf{m}\cdot\mathbf{s}^{-1})$
	1,	4-Dioxane (1)	+ Ethanedio	d (2)			1,4-	Dioxane (1) +	Tributylami	ine (2)	
298.15	0.0	1111.3	12.62	1.4307	1659	298.15	0.0	774.4	1.360	1.4274	1261
	0.1031	1100.6	9.007	1.4294	1620		0.1201	785.1	1.245	1.4266	1253
	0.2072	1090.6	6.285	1.4284	1577		0.2122	794.7	1.190	1.4259	1254
	0.3021	1082.0	4.654	1.4275	1537		0.3072	806.0	1.156	1.4250	1257
	0.4246	1071.1	3.177	1.4260	1485		0.4085	820.5	1.137	1.4244	1204
	0.5042	1056.8	2.000	1 4238	1430		0.5014	856.9	1 1 1 1 8	1 4226	1281
	0.6914	1049.6	1.663	1.4230	1400		0.6998	884.0	1.112	1.4217	1292
	0.7906	1042.4	1.388	1.4220	1381		0.7999	917.9	1.114	1.4210	1305
	0.8909	1035.2	1.212	1.4210	1369		0.8947	960.6	1.133	1.4205	1320
	1.0	1027.6	1.166	1.4201	1347		1.0	1027.6	1.166	1.4201	1343
303.15	0.0	1107.3	9.618	1.4269		303.15	0.0	770.1	1.221	1.4251	
	0.1031	1096.6	7.262	1.4279			0.1201	780.9	1.142	1.4240	
	0.2072	1080.4	5.149 3.840	1.4208			0.2122	790.2 801.6	1.089	1.4230	
	0.3021	1066.5	2 680	1 4240			0.3072	815.9	1.035	1 4218	
	0.5042	1059.7	2.184	1.4226			0.5014	832.1	1.032	1.4209	
	0.5986	1051.7	1.728	1.4216			0.5972	852.1	1.026	1.4201	
	0.6914	1044.5	1.447	1.4207			0.6998	879.2	1.022	1.4192	
	0.7906	1037.1	1.226	1.4196			0.7999	912.6	1.025	1.4185	
	0.8909	1029.9	1.081	1.4187			0.8947	955.2	1.042	1.4180	
200 15	1.0	1021.9	1.069	1.41/0		200 15	1.0	1021.9	1.069	1.41/0	
306.15	0.0	103.5	7.559	1.4240		306.15	0.0	700.2	1.125	1.4220	
	0.2072	1082.4	4.013	1.4250			0.2122	785.9	0.989	1.4210	
	0.3021	1073.1	3.044	1.4236			0.3072	797.1	0.963	1.4201	
	0.4246	1061.7	2.181	1.4219			0.4085	811.4	0.950	1.4196	
	0.5042	1054.7	1.802	1.4204			0.5014	827.5	0.940	1.4184	
	0.5986	1046.8	1.444	1.4193			0.5972	847.4	0.934	1.4174	
	0.6914	1039.5	1.229	1.4186			0.6998	874.1	0.933	1.4168	
	0.7900	1031.8	1.003	1.4172			0.7999	907.4	0.930	1.4100	
	1.0	1024.5	0.945	1 4143			10	1016.2	0.932	1 4143	
		1 4 Diovano ($1) \pm Hovano$	(2)			1.4	Diovano(1) +	Triothylami	ino (2)	
298.15	0.0	654.8	0.315	1.3728	1083	298.15	0.0	723.1	0.363	1.3983	1127
200110	0.1135	682.0	0.333	1.3758	1087	200110	0.1104	744.6	0.392	1.3996	1139
	0.2057	706.4	0.357	1.3787	1099		0.2044	764.5	0.418	1.4014	1155
	0.3099	736.2	0.391	1.3824	1116		0.3028	787.3	0.451	1.4032	1172
	0.4032	765.7	0.429	1.3864	1132		0.3980	811.3	0.494	1.4048	1189
	0.5010	799.6	0.482	1.3906	1154		0.4946	838.0	0.542	1.4068	1210
	0.0028	030.1 979 7	0.549	1.3934	1185		0.5980	809.7 002.3	0.613	1.4095	1234
	0.7991	924.0	0.753	1.4078	1257		0.7996	941.2	0.815	1.4147	1290
	0.8962	972.1	0.912	1.4140	1303		0.8934	979.8	0.958	1.4176	1318
	1.0	1027.6	1.166	1.4201	1347		1.0	1027.6	1.166	1.4201	1343
303.15	0.0	649.7	0.299	1.3698		303.15	0.0	718.5	0.347	1.3955	
	0.1135	677.3	0.319	1.3728			0.1104	739.7	0.372	1.3969	
	0.2057	701.4	0.340	1.3756			0.2044	759.5	0.397	1.3985	
	0.3099	731.2	0.372	1.3793			0.3028	782.2 806 1	0.428	1.4002	
	0.5010	794.3	0.455	1.3878			0.4946	832.8	0.512	1.4040	
	0.6028	832.7	0.517	1.3928			0.5986	864.3	0.575	1.4067	
	0.7006	873.3	0.596	1.3986			0.6952	896.8	0.652	1.4090	
	0.7991	918.3	0.705	1.4048			0.7996	935.6	0.760	1.4120	
	0.8962	966.4	0.849	1.4119			0.8934	974.2	0.889	1.4148	
000 15	1.0	1021.9	1.069	1.4170		000 15	1.0	1021.9	1.069	1.4170	
308.15	0.0	644.8 672.5	0.286	1.30/0		308.15	0.0	713.0	0.330	1.3920	
	0.2057	696.5	0.323	1.3726			0.2044	754.6	0.377	1.3956	
	0.3099	726.1	0.353	1.3767			0.3028	777.1	0.404	1.3972	
	0.4032	755.3	0.386	1.3814			0.3980	800.9	0.438	1.3994	
	0.5010	788.9	0.429	1.3850			0.4946	827.5	0.481	1.4013	
	0.6028	827.2	0.485	1.3903			0.5986	859.0	0.538	1.4041	
	0.7006	868.0	0.557	1.3959			0.6952	891.5	0.608	1.4062	
	0.7991	912.4	0.656	1.4017			0.7996	930.0	0.705	1.4093	
	0.8962	90U.8 1016 9	0.787	1.4098			0.8934	908.3 1016 9	0.021	1.4121	
	1.0	1010.2	0.304	1.4143			1.0	1010.2	0.304	1.4143	

In all the property measurements, temperature was controlled within an accuracy of ± 0.01 K using a constant-temperature bath. A Julabo immersion cooler (FT 200,

Julabo Labortechnik, Gmbh, Germany) was used to cool the water bath. This unit was installed at the intake of a heating circulator to draw the heat away from the circulat-

Table 3.	Derived	Parameter	's of Equ	ation 3 f	for Va	rious
Function	is at Diffe	erent Temp	peratures	5		

function	temp/K	A_1	A_2	A_3	σ			
1,4-Dioxane (1) + Ethanediol (2)								
V ^E /10 ^{−6} (m ³ ·mol ^{−1})	298.15	-1.099	-0.024	-0.037	0.0104			
	303.15	-1.174	-0.046	-0.218	0.0106			
	308.15	-1.226	-0.015	-0.432	0.0114			
$\Delta \eta / (mPa \cdot s)$	298.15	-17.25	-9.156	-3.606	0.0453			
	303.15	-12.65	-5.325	-0.761	0.0634			
	308.15	-9.800	-4.515	-2.079	0.0173			
$\Delta R \times 10^{6}$ /(m ³ ·mol ⁻¹)	298.15	-3.216	-0.778	-0.245	0.0066			
	303.15	-3.062	-0.923	0.163	0.0063			
	308.15	-3.041	-0.987	0.254	0.0066			
$\Delta u/(\mathbf{m} \cdot \mathbf{s}^{-1})$	298.15	-187.4	66.04	115.9	2.040			
$\Delta k_{\rm S}/({\rm TPa^{-1}})$	298.15	-59.87	61.21	-0.87	4.139			
1	,4-Dioxa	ne (1) + He	xane (2)					
V ^E /10 ^{−6} (m ³ ·mol ^{−1})	298.15	1.522	2.073	-0.869	0.0167			
	303.15	1.418	1.800	-1.244	0.0177			
	308.15	1.391	1.664	-1.470	0.0241			
$\Delta \eta / (mPa \cdot s)$	298.15	-1.039	0.588	-0.366	0.0054			
	303.15	-0.924	0.495	-0.268	0.0025			
	308.15	-0.827	0.439	-0.228	0.0021			
$\Delta R \times 10^{6}$ /(m ³ ·mol ⁻¹)	298.15	-3.340	0.742	0.124	0.0186			
	303.15	-3.301	0.886	0.161	0.0215			
	308.15	-3.310	0.953	0.092	0.0358			
$\Delta u/(\mathbf{m} \cdot \mathbf{s}^{-1})$	298.15	-242.2	-14.54	27.26	3.036			
$\Delta k_{\rm S}/({\rm TPa}^{-1})$	298.15	-286.1	-136.6	94.50	4.725			
1,4-1	Dioxane	(1) +Tributy	ylamine (2)					
$V^{E}/10^{-6} (m^3 \cdot mol^{-1})$	298.15	3.722		0.177	0.0337			
	303.15	3.774	-1.053	0.244	0.0505			
	308.15	4.030	-0.858	0.429	0.0757			
$\Delta n/(mPa \cdot s)$	298.15	-0.557	-0.184	-0.309	0.0025			
	303.15	-0.457	-0.106	-0.157	0.0036			
	308.15	-0.462	-0.132	-0.243	0.0030			
$\Delta R \times 10^{6}/(\mathrm{m}^{3}\cdot\mathrm{mol}^{-1})$	298.15	-37.14	18.75	-11.07	0.0923			
	303.15	-37.10	18.92	-11.17	0.1211			
	308.15	-37.04	18.83	-11.02	0.1233			
$\Delta u/(\mathbf{m} \cdot \mathbf{s}^{-1})$	298.15	-120.47	-13.50	-67.48	0.607			
$\Delta k_{\rm S}/({\rm TPa}^{-1})$	298.15	-57.5	-53.7	193.5	3.199			
1,4-]	Dioxane	(1) +Triethy	ylamine (2)					
V ^E /10 ^{−6} (m ³ ·mol ^{−1})	298.15	-0.406	1.054	-0.631	0.0133			
	303.15	-0.333	1.170	-0.472	0.0160			
	308.15	-0.362	1.133	-0.621	0.0092			
$\Delta \eta / (mPa \cdot s)$	298.15	-0.877	0.426	-0.145	0.0012			
•	303.15	-0.777	0.350	-0.084	0.0016			
	308.15	-0.699	0.313	-0.079	0.0011			
$\Delta R \times 10^{6}/(\mathrm{m}^{3}\cdot\mathrm{mol}^{-1})$	298.15	-5.821	1.408	-0.322	0.0216			
	303.15	-5.776	1.486	-0.278	0.0109			
	308.15	-5.772	1.468	-0.266	0.0146			
$\Delta u/(\mathbf{m} \cdot \mathbf{s}^{-1})$	298.15	-96.39	-34.11	47.25	2.058			
$\Delta k_{\rm S}/({\rm TPa}^{-1})$	298.15	-289.8	-11.14	-4.38	1.183			

ing bath liquid. An immersion probe was connected to the instrument with a flexible and insulated tube, which maintained the constant temperature of the bath.

Results and Discussion

At least three independent readings of all the physical property measurements on ρ , η , n_D , and u were taken for each composition, and the averages of these experimental values are presented in Table 2.

From the density results, excess molar volume, $V^{\mathbb{E}}$, has been calculated as

$$V^{\rm E} = V_{\rm m} - V_1 x_1 - V_2 x_2 \tag{1}$$

Here, $V_{\rm m}$ is the molar volume of the mixture, V_1 and V_2 are the molar volumes of the respective pure components, and x_i represents the mole fraction of the *i*th component of the mixture. In a similar manner, the results of $\Delta \eta$, ΔR , Δu , and $\Delta k_{\rm s}$ have been calculated using the values of η , $n_{\rm D}$, and u from a general relationship of the type used earlier,^{12–14}

Figure 1. Excess molar volume vs mole fraction of 1,4-dioxane with (\bigcirc) ethanediol, (\square) hexane, (\triangle) tributylamine, and (\bullet) triethylamine at 298.15 K.

Figure 2. Deviations in viscosity vs mole fraction at 298.15 K for the same mixtures presented in Figure 1.

In the above equation, ΔY represents $\Delta \eta$, ΔR , Δu , and Δk_s , respectively, while $Y_{\rm m}$ represents the respective mixture properties, viz., viscosity, η , molar refractivity, R (calculated from the Lorentz–Lorentz relation), speed of sound, u, and isentropic compressibility, $k_{\rm s} (=1/u^2 \rho)$ of the binary mixture; the symbol Y_i refers to the same properties for the pure components of the mixture. For calculation of ΔR and $\Delta k_{\rm s}$, volume fraction, $\phi_i (=\sum x_i v_i \sum_{j=1}^2 x_i v_j)$, was used,^{10,15,16} but for calculation of $\Delta \eta$ and Δu , the mole fraction, x_i , was used.

All the quantities (V^{E} , $\Delta \eta$, ΔR , Δu , and Δk_{s}) have been fitted to the Redlich and Kister¹⁷ equation by the method of least-squares using the Marquardt algorithm¹⁸ to derive the binary coefficients, A_{j} , and the standard deviation, σ , as follows.

$$V^{E}(\Delta Y) = x_{1} x_{2} \sum_{j=1}^{k} A_{j} (x_{2} - x_{1})^{j-1}$$
(3)

In each case, the optimum number of coefficients, A_j , was determined from an examination of the variation of stan-

Figure 3. Deviations in molar refraction (ΔR) vs volume fraction at 298.15 K for the same mixtures presented in Figure 1.

Figure 4. Deviations in speed of sound (Δu) vs mole fraction at 298.15 K for the same mixtures presented in Figure 1.

dard deviation, σ , as calculated by

$$\sigma = \left(\frac{\sum (Y_{cal}^{E} - Y_{obs}^{E})^{2}}{n - m}\right)^{1/2}$$
(4)

Here *n* represents the number of measurements and *m* is the number of coefficients used in fitting the data. The estimated values of A_j and σ for V^E , $\Delta \eta$, ΔR , Δu , and Δk_s are presented in Table 3. In all the cases, the best fit was found by using only three adjustable fitting coefficients in eq 3.

The results of V^{E} at 298.15 K presented in Figure 1 display widely varying trends. For instance, a large positive V^{E} is observed for mixtures of 1,4-dioxane + tributylamine, while a negative V^{E} is observed for the 1,4-dioxane + ethanediol mixture. On the other hand, for mixtures of 1,4-dioxane + hexane or 1,4-dioxane + triethylamine, V^{E} plots exhibit slightly sigmoidal trends. Particularly, with 1,4-dioxane + triethylamine, the V^{E} values are negative over the entire range of mixture composition, whereas with 1,4-dioxane + *n*-hexane, the V^{E} values are positive up to x_{1} =

Figure 5. Deviations in isentropic compressibility (Δk_s) vs volume fraction at 298.15 K for the same mixtures presented in Figure 1.

Figure 6. Effect of temperature on V^{E} for the 1,4-dioxane + ethanediol mixture at (\bigcirc) 298.15 K, (\square) 303.15 K, and (\triangle) 308.15 K.

0.9, beyond which the V^{E} curve falls in the negative scale. This may be due to dispersion forces between the mixing components. Such widely differing trends are attributed to different types of interactions depending upon the dipole moment, dielectric constant, and molar volumes of the second mixing component of the mixture. For instance, ethanediol has the highest values of dipole moment ($\mu =$ 2.31) and dielectric constant (D = 37.70) among the liquids considered here. The large differences of these values between 1,4-dioxane and ethanediol indicate the specific interactions between them leading to negative V^E over the whole range of mixture composition. The large positive $V^{\rm E}$ observed for 1,4-dioxane + tributylamine is attributed to their large differences in molar volumes ($V_1 = 85.74 \text{ cm}^3$ / mol and $V_2 = 239.3$ cm³/mol) as well as their almost identical values of dielectric constants ($D_1 = 2.21$ and D_2 = 2.29) leading to expansion of volume upon mixing.

Variation of $\Delta \eta$ versus x_1 at 298.15 K, displayed in Figure 2, shows a large negative $\Delta \eta$ for mixtures of 1,4-dioxane + triethylamine, whereas for all the remaining mixtures, negative values of $\Delta \eta$ are almost identical over the entire mixture composition. A similar trend is observed for the dependence of ΔR versus ϕ_1 as shown in Figure 3, except

Figure 7. Effect of temperature on $\Delta \eta$ for the 1,4-dioxane + ethanediol mixture at (\bigcirc) 298.15 K, (\square) 303.15 K, and (\triangle) 308.15 K.

that the largest negative ΔR is observed for mixtures of 1,4-dioxane with tributylamine.

The results of Δu versus x_1 at 298.15 K are displayed in Figure 4. It is observed that for all the mixtures, Δu values are negative, and these negative values vary in the following order: hexane > ethanediol > tributylamine > triethylamine. The results of Δk_s versus ϕ_1 at 298.15 K displayed in Figure 5 are slightly different. For instance, with mixtures of 1,4-dioxane + triethylamine or 1,4dioxane + hexane, Δk_s values are negative over the entire mixture composition. On the other hand, for mixtures of 1,4-dioxane with ethanediol or tributylamine, the Δk_s versus ϕ_1 curves exhibit somewhat sigmoidal trends. For 1,4-dioxane + ethanediol mixtures, these variations are in the negative scale, whereas with 1,4-dioxane + tributylamine, the values of Δk_s vary in both the positive and negative scales.

The effect of temperature on V^{E} and $\Delta \eta$ is quite systematic as displayed typically in Figures 6 and 7, in the case of the dioxane + ethanediol mixture. It is found that V^{E} results become more negative with increasing temperature, whereas $\Delta \eta$ values show the reverse trend.

In all the plots, points represent the quantities calculated from eqs 1 and 2, while the smooth curves are drawn from the best-fitted values calculated from eq 3.

Literature Cited

- (1) Nayak, J. N.; Aralaguppi, M. I.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Tri-*n*-butylamine + Triethylamine, + Tetrahydrofuran, + Tetradecane, + Tetrachloroethylene, + Pyridine, or + Trichloroethylene at (298.15, 303.15, and 308.15) K J. Chem. Eng. Data, in press.
- (2) Aminabhavi, T. M.; Patil, V. B. Density, Viscosity, Refractive Index and Speed of Sound in Binary Mixtures of Ethenylbenzene with N,N-Dimethylacetamide, Tetrahydrofuran, N,N-Dimethylformamide, 1,4-Dioxane, Dimethyl Sulfoxide, Chloroform, Bromoform, and 1-Chloronaphthalene in the Temperature Interval (298,15, 303.15 and 308.15) K J. Chem. Eng. Data **1998**, 43, 497– 503.
- (3) Oswal, S. L.; Phalak, R. P. Viscosities of nonelectrolyte liquidmixtures. 1. Binary mixtures containing para-dioxane. *Int. J. Thermophys.* 1992, 13, 251–267.

- (4) Corradini, F.; Marcheselli, L.; Tassi, L.; Tosi, G. Kinemeatic viscosities of 1,2-ethanediol/1,4-dioxane binary mixtures from -10 degrees C to 80 degrees C. *Bull. Chem. Soc. Jpn.* **1993**, *66*, 1886-1891.
- (5) Penas, A.; Calvo, E.; Pintos, M.; Amigo, A.; Bravo, R. Refractive indices and surface tensions of binary mixtures of 1,4-dioxane plus *n*-alkanes at 298.15 K. *J. Chem. Eng. Data* **2000**, *45*, 682–685.
- (6) Ohji, H.; Tamura, K.; Ogawa, H. Excess thermodynamic properties of (2-ethoxyethanol + 1,4-dioxane or 1,2-dimethoxyethane) at temperatures between (283.15 and 313.15) K. *J. Chem. Thermodyn.* **2000**, *32*, 319–328.
- (7) Takigawa, T.; Tamura, K.; Ogawa, H.; Murakami, S.; Takagi, S. Excess molar isobaric heats capacities CPE of the mixtures of {*x* 1,3-dioxane or 1,4-dioxane + (1 *x*) 2,2,4-trimethylpentane, or tetrachloroethene, or benzene} were measured at 298.15 K. *Thermochim. Acta* **2000**, *25–29*, 352–353.
- (8) Aminabhavi, T. M.; Bindu, G. Density, Viscosity, Refractive Index and Speed of Sound in Aqueous Mixtures of N.N-Dimethylformamide, Dimethyl Sulfoxide, N.N-Dimethylacetamide, Acetonitrile, Ethylene Glycol, Diethylene Glycol, 1,4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298.15 K. J. Chem. Eng. Data 1995, 40, 856–861.
- (9) Aminabhavi, T. M.; Aralaguppi, M. I.; Bindu, G.; Khinnavar, R. S. Densities, Shear Viscosities, Refractive Indices, and Speeds of Sound of Bis(2-methoxyethyl) Ether with Hexane, Heptane, Octane, and 2,2,4-Trimethylpentane in the Temperature Interval 298.15 to 318.15 K. *J. Chem. Eng. Data* **1994**, *39*, 522–528.
 (10) Aminabhavi, T. M.; Bindu, G. Densities, Shear Viscosities,
- (10) Aminabhavi, T. M.; Bindu, G. Densities, Shear Viscosities, Refractive Indices, and Speeds of Sound of Bis(2-methoxyethyl) Ether with Nonane, Decane, Dodecane, Tetradecane, and Hexadecane at 298.15, 308.15 K. J. Chem. Eng. Data 1994, 39, 529– 534.
- (11) Aralaguppi, M. I.; Aminabhavi, T. M.; Balundgi, R. H.; Joshi, S. S. Thermodynamic Interactions in Mixtures of Bromoform with Hydrocarbons. J. Phys. Chem. 1991, 95, 5299–5308.
- (12) Nayak, J. N.; Aralaguppi, M. I.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of Ethyl Chloroacetate with Hexane, Heptane, Octane, Nonane, Decane, and Dodecane. *J. Chem. Eng. Data* **2001**, *46*, 891–896.
- (13) Aralaguppi, M. I.; Aminabhavi, T. M.; Balundgi, R. H. Excess Molar volume, Excess Isentropic Compressibility and Excess Molar Refraction of Binary Mixtures of Methyl Acetoacetate with Benzene, Toluene, *m*-Xylene, Mesitylene, and Anisole. *Fluid Phase Equilib.* **1992**, *71*, 99–112.
- (14) Aralaguppi, M. I.; Aminabhvi, T. M.; Harogoppad, S. B.; Balundgi, R. H. Thermodynamic Interactions in Binary Mixtures of Dimethyl Sulfoxide with Benzene, Toluene, 1,3-Dimethylbenzene, 1,3,5-Trimethylbenzene, and Methoxybenzene. J. Chem. Eng. Data 1992, 37, 298–303.
- (15) Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of 2-Chloroethanol with Methyl Acetate, Ethyl Acetate, *n*-Propyl Acetate, and *n*-Butyl Acetate. *J. Chem. Eng. Data* **1999**, 44, 441–445.
- (16) Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of Cyclohexanone with Hexane, Heptane, Octane, Nonane, Decane, Dodecane, and 2,2,4-Trimethylpentane. J. Chem. Eng. Data 1999, 44, 435-440.
- (17) Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. *Ind. Eng. Chem.* **1948**, 40, 345–348.
- (18) Marquardt, D. W. An Algorithm for Least Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431– 441.
- (19) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. *Techniques of Chemistry, Organic Solvents. Physical Properties and Methods of Purifications*; John Wiley & Sons: New York, 1986; Vol. II.
 (20) Tsierkezos, N. G.; Molinou, I. E. Thermodynamic Properties of
- (20) Tsierkezos, N. G.; Molinou, I. E. Thermodynamic Properties of Water + Ethylene Glycol at (283.15, 293.15, 303.15, and 313.15) K. J. Chem. Eng. Data **1998**, 43, 989–993.
- (21) Oswal, S.; Patel, A. T. Speeds of Sound, Isentropic Compressibilities, and Excess Volumes of Binary Mixtures. 1. Trinalkylamines with Cyclohexane and Benzene. J. Chem. Eng. Data 1994, 39, 366–371.

Received for review January 1, 2003. Accepted April 4, 2003. This research was funded by the Department of Science and Technology, New Delhi, India (SP/S1/H-09/2000).

JE030107C